
A theoretical framework for absorption (dichroism) and the resonance-enhanced scattering of

x-rays by magnetic materials: I

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys.: Condens. Matter 8 10983

(http://iopscience.iop.org/0953-8984/8/50/024)

Download details:

IP Address: 171.66.16.207

The article was downloaded on 14/05/2010 at 05:55

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/8/50
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter8 (1996) 10983–11007. Printed in the UK

A theoretical framework for absorption (dichroism) and
the resonance-enhanced scattering of x-rays by magnetic
materials: I

Stephen W Lovesey† and Ewald Balcar‡
† ISIS Facility, Rutherford Appleton Laboratory, Oxfordshire OX11 0QX, UK
‡ Atominstitut derÖsterreichischen Universitäten, A-1020 Vienna, Austria

Received 19 August 1996

Abstract. The scattering length common to the attenuation coefficient and cross-sections for
the resonance-enhanced scattering of x-rays suffers from a dependence on a spectrum of virtual,
intermediate states which contain next to no useful information about the environment of the
atoms. It is the dependence of the scattering length on intermediate states that sets the x-ray
techniques apart from neutron scattering and other techniques which directly probe properties
of magnetic materials, and limits the usefulness of physical intuition in the interpretation of
empirical x-ray data. As a step toward a legible interpretation, in a language of standard atomic
variables, an investigation is reported of a modified scattering length constructed to possess
a structure similar to the scattering length for magnetic neutron scattering, namely, it has the
mathematical structure of a spherical tensor operator, to which all Racah’s methods for electrons
in an open valence shell can be applied. In the process of reaching this goal, the influence of
the intermediate states on the scattering length is reduced by summing over a limited set of
quantum numbers for the intermediate states. Topics covered in the investigation include the
attenuation coefficient for x-rays passing through a foil of magnetic material, dichroism, and
the cross-sections for resonance-enhanced elastic (Bragg) and inelastic scattering of x-rays by
magnetic materials. The treatment of polarization in the primary beam admits states of partial
polarization, described by a Stokes vector. Bothjj -coupling and Russell–Saunders coupling
schemes for the valence states are explored.

1. Introduction

In the past decade, experimental techniques that employ beams of x-rays have proved their
worth for the study of the magnetic properties of materials (for a review see [1]). For the
most part using beams of x-rays produced by particle accelerators, a raft of experiments
have been successfully completed on a wide range of magnetic materials.

Two of the techniques, absorption and scattering, are truly complementary since the
interpretation of the empirical data rests on a common scattering length. In terms of the
scattering length,f , the attenuation coefficient is proportional to the imaginary part off

evaluated for the forward-scattering geometry and averaged over all states of the target
material. On the other hand, scattering experiments are interpreted in terms of a scattering
cross-section which is a quadratic function of the scattering length. The cross-section for
Bragg diffraction, a strictly elastic process, is proportional to|〈f 〉|2 where〈f 〉 is the time
(thermal) average off . Inelastic and total scattering experiments are properly interpreted
in terms of a cross-section related to〈|f |2〉.
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For processes involving x-ray absorption and scattering the content of the measured
signal attributable to the magnetic properties of the sample, altogether, is pale and
insignificant in its intensity, compared to the intensity of contributions to the signal arising
from the electric charge properties of the material. At least for the moment, success in
studying magnetic properties with x-ray beam techniques hinges on adopting a scheme to
enhance the magnetic signal with respect to the charge signal. In absorption experiments
one exploits the sensitivity of the attenuation coefficient to the condition of the polarization
in the primary beam, a so-called dichroic effect. Use of circular polarization is very useful.
A scheme for enhancing scattering signals is to tune the energy of the primary beam to the
energy of a resonance in the magnetic atom of interest. Resonance-enhanced scattering, as
it is sometimes called, has proved useful with materials which contain magnetic atoms from
the lanthanide and actinide series in the Periodic Table.

Turning to the interpretation, at an atomic level of detail, of dichroic signals and
resonance-enhanced scattering, both are related to the contribution tof generated by
the current operator treated in the second order of perturbation theory. It is the energy
denominator in this contribution tof that generates the first-order contribution to the
attenuation coefficient. Tuning the energy of the primary beam to a resonance means
finding an energy at which the real part of the denominator vanishes, with a concomitant
enhancement of the corresponding cross-section (elastic and inelastic processes can be
resonance enhanced). The resonance process entails the absorption of a photon, and ejection
of an electron from a core state of the equilibrium configuration of the atom to an orbital
which is unoccupied. These virtual, intermediate states, characterized by a hole in a core
state, are not states of the equilibrium configuration of the electrons. While necessary in
the resonance process, of course, the intermediate states are an unwelcome distraction in
the interpretation of empirical data. A full account of the intermediate states which arise in
elements that possess open valence shells, and display magnetic properties in solids, can only
be achieved with the resource of a computer program to calculate the full atomic structure.
There is one exception, namely, an atom for which the open valence shell of the equilibrium
configuration contains one hole; in all other cases a tried and tested computer program is
required to enumerate the plethora of intermediate states and provide their energies and
wave functions (and matrix elements); see for example listings given in [2, 3].

While the intermediate states cannot be entirely removed in a quantitative interpretation
of empirical data, perhaps one can achieve a tolerable interpretation with less than the full
information on the intermediate states. An aim of the paper is to report a scheme in which
the intermediate states are largely eliminated from the calculation of the scattering length. It
is argued that information, on the magnetic properties of the material, carried in the valence
orbitals is not unduly distorted by the process of elimination. With the idealized scattering
length, calculations of the attenuation coefficient and cross-sections, for elastic and inelastic
resonance-enhanced scattering, are made with the standard tools of atomic spectroscopy.
Many of the quantities involved, e.g. Racah’s unit-tensor operators for equivalent particles,
are widely available in analytic or tabular form. Our calculations make quite explicit the
complementary nature of absorption and resonance-enhanced scattering. For a special case,
in which the valence orbitals are represented by one atomic wave function, we recover
results given in [1].

The following section contains the definition of the scattering length which describes
the attenuation and resonance-enhanced scattering of x-rays, and the simplification brought
to it by the neglect of the contribution explicit in the spin of the electrons and a treatment
at a first level of approximation of the momentum of the electrons. The derivation of our
formula, which we later call anidealizedscattering length, in the form of a spherical tensor,
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is described in an appendix. Section 3 is given over to a summary of its properties with a
view to applying it to the calculation of the attenuation coefficient and cross-sections, which
are taken up in three subsequent sections. One topic not pursued is the calculation of the
states of polarization in the secondary beam of x-rays. This is straightforward, starting from
our finding here for the scattering length and relevant results in reference [1]. We conclude
with a brief summary of our findings.

2. The resonant component of the scattering length

Throughout the paper we consider the component of the scattering length for a beam of x-
rays that arises from treating the current operator,J(q), in the second order of perturbation
theory. (Other terms in the scattering length arise from contributions to the x-ray-matter
interaction which are quadratic in the vector potential of the photons and, hence, treated in
the first order of perturbation theory.) The resonant component of the scattering length,f , is
characterized by an energy denominator whose real part is zero for a suitable energy,E, of
the primary beam of x-rays. At the condition of resonance, the denominator has a magnitude
set by the (decay) width in energy,γ , of the intermediate states in the resonance process,
labelled byη. Unlike the initial and final states of the sample, described by quantum numbers
µ andµ′, respectively, the intermediate states are not from the equilibrium configuration of
the sample.

Let the wave vector and polarization vector of the primary photon beam beq and ε,
respectively, withq = (2π/λ). The corresponding quantities for the secondary beam are
distinguished by a prime. The resonant contribution to the scattering length is [1]

f = −(re/m)
∑

η

〈µ′|ε′ · J(−q′)|η〉〈η|ε · J(q)|µ〉
(Eµ + E − Eη + iγη/2)

wherere is the classical radius of an electron (re = 0.282× 10−12 cm) andm is the mass
of an electron. At the condition of resonance for the intermediate stateη0 the difference
in energy between the intermediate and initial state of the target,Eη0 − Eµ, is matched by
E. For this condition the contribution tof from all other intermediate states is relatively
small. The dimension off is length.

The current operator contains a sum over all electrons in the target sample. We
consider resonant processes that are specific to a particular atom in the sample. Hence,
it is appropriate to expressJ(q) as the combined sum over all these atoms, at positions
in the sample denoted by{R0}, and the sum over all electrons in the atom located atR0.
Given that there is no correlation between the resonant electronic processes at different
atoms the scattering length is

f = −(re/m)
∑
R0

exp(ik · R0)
∑

η

{ 〈µ′|ε′ · J(−q′)|η〉〈η|ε · J(q)|µ〉
(Eµ + E − Eη + iγη/2)

}
R0

(2.1)

with k = q − q′. The spatial phase factor in (2.1) is determined by the corresponding
quantity in the current operator, given explicitly later in this section, and the actual form
in which the product of current operators arises in the scattering length. The expression is
correct for a rigid lattice. To allow for the influence of thermally activated lattice vibrations
multiply the phase factor in (2.1) by the Debye–Waller factor evaluated for a wave vector
k. In the expression (2.1), which is the basis of all our subsequent work on absorption and
scattering, the matrix elements are calculated for the atom at siteR0; the condition of an
atom, in general, will depend on its position in the sample, e.g. the axes of quantization
will change, on account of the magnetic order, on moving from one atom to another.
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The attenuation coefficient and cross-section for elastic (Bragg) scattering are calculated
from the scattering length evaluated for elastic events. In this instance, one takesµ = µ′

and averages the scattering length over the degeneracy of equilibrium states weighting them
by the degeneracy factor and thermal population factor. In the case of an isolated atom the
quantum numbers{µ} areJ andM, whereJ is the total angular momentum andM is the
magnetic quantum number. The sum to be performed to obtain the scattering length for
absorption and Bragg diffraction is a sum over the 2J + 1 values ofM, and the weight of
eachM-state is 1/(2J + 1). In the event that the degeneracy is lifted by a magnetic field
(either an applied field or an effective field generated by neighbouring atoms) eachM-state
will be weighted by a thermal population factor= exp(Mu)/4 where4 is the partition
function. For inelastic scattering events, the cross-section is obtained from the absolute
square off multiplied by a delta function which expresses the conservation of energy in
the event. The total cross-section is proportional to this quantity averaged over all initial
states and summed over all final states.

The current operator in (2.1) is built from the operators of linear momentum,p, which
is conjugate to the position vectorR, and spin,s. If the electrons in the atom, at the site
defined byR0, are labelled by the indexj , then

J(q) =
∑

j

(pj + i h̄sj × q) exp(iq · Rj ).

In subsequent work we set aside the spin term inJ(q), on the grounds that its contribution
to the required matrix element ofJ(q) is small relative to the contribution made by the
momentum operator. Furthermore, we adopt the dipole approximation for the momentum
contribution, for the moment at least. In this case, a matrix element ofJ(q) in (2.1) is
independent ofq, and

〈η|ε · J(q)|µ〉 = (im/h̄)(Eη − Eµ)
∑

j

〈η|ε · Rj |µ〉. (2.2)

The magnetic content of the matrix element in (2.2) is carried by the initial, valence state
of the atom, labelled byµ, and a similar comment is valid for the final state of the atom,
µ′, in the second matrix element appearing in the resonant contribution to the scattering
length. It follows from (2.2) that the magnetic features of the atoms in question are probed
by electric dipole (E1) transitions.

3. The idealized scattering length

The wave function of the core state in the resonant contribution to the scattering length,f ,
has a relatively small radius and the binding energy of the state is large. In consequence,
the properties of the core state do not carry very much information about the environment
of the atom. This situation is in strong contrast to the orbitals of the weakly bound electrons
in the partially filled valence shell. If the objective of the experiment, be it a measurement
of an attenuation coefficient or a scattering cross-section, is to learn about the environment
of the atom, then the properties of the valence orbitals, and not the core states, are the
appropriate focus of attention in the interpretation of empirical data. From this standpoint,
the variables for the core state are irrelevant variables.

The spectrum of the intermediate states, belonging to an excited configuration in which
there is a hole in a core state and the ejected electron occupies a valence state, contains
very many components. The presence of the intermediate states in the scattering length
make it inscrutable in terms of quantities and concepts central to the development of our
understanding of magnetism. Of course, not all the components contribute to the sum over
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intermediate states inf because of the operation of selection rules for matrix elements of the
dipole operator, say. Even so, the spectrum of components that contribute is complicated, for
all but the simplest case of interest in which the valence shell of the equilibrium configuration
contains a single hole, e.g. Yb3+.

The two aspects of the intermediate states described in the two preceding paragraphs
make it clear that the possibility of removing the intermediate states from the interpretation of
the data is an attractive prospect. Should the latter step be achieved in a sufficiently delicate
manner the remaining information in the interpretation will not be adversely affected too
much. We set out to reduce the influence of the intermediate states in the formula for the
scattering length and, in so doing, lose a minimal amount of useful information about the
environment of the atom which is carried by the valence orbitals.

The environment influences the geometrical aspect of a wave function, e.g. the
distribution of the magnetic quantum numbers, among other things. Hence, in eliminating
information about the intermediate states in the scattering length we do not want to unduly
distort the dependence of the product of matrix elements and the energy denominator on the
magnetic quantum numbers associated with the initial and final states, of the equilibrium
configuration of the atom. To this end, we can require that the magnetic quantum numbers
arise in the product of matrix elements and the associated energy denominator, after largely
eliminating the intermediate states, in the manner we find for a simple, direct probe of their
character, with no intermediate states. Such a probe has an interaction operator, which
contains a sum of atomic variables, that has the property of a spherical tensor operator. For
example, in the scattering of neutrons by a magnetic atom the appropriate operator is the
total angular momentum, in a useful approximation. Our concept, therefore, is to find the
tensor operator which corresponds to the criteria that we have set. Let the spherical tensor
operator in question beT K

Q , whereK is the rank of the tensor and−K 6 Q 6 K. The
Wigner–Eckart theorem applied this operator is

〈JM|T K
Q |J ′M ′〉 = (−1)J−M

(
J K J ′

−M Q M ′

)
(J ||T (K)||J ′). (3.1)

The 3j -symbol contains the geometrical character of the matrix element in so far as it
contains the magnetic quantum numbersM and M ′. The remaining quantity, a reduced
matrix element, does not depend onM andM ′. Our goal, then, is to leave the scattering
length, after eliminating some information on the intermediate states, in a form where matrix
elements of the scattering length satisfy (3.1).

Let us now set out a plausibility argument for the technical side of what is involved
in deriving an idealized scattering length, and this amounts to making a judicious choice
of labels in the setη over which to sum and executing the sum without approximation.
The latter exercise is relegated to an appendix, for even though it uses identities familiar to
students of nuclear shell theory and atomic spectroscopy the details, at first sight, might fog
the view of our goal. Also in the appendix is a summary of what we need from Racah’s
work on handling equivalent particles in terms of unit-tensor operators. To indicate that our
goal is reachable, at a cost to be quantified, we recall the standard formula for the product
of two spherical harmonics in which the product is expressed as a linear combination of
single spherical harmonics. A dipole operator is proportional to a spherical harmonic of
rank one, and the scattering length (2.1) contains a product of their matrix elements. Hence,
the product formula for spherical harmonics has the structure that we seek for the scattering
length. Further encouragement is found in the formula for the reduced matrix element of a
tensor operator formed from the product of two tensors that act on the same part of a system
(in our case, the spatial part of wave functions). Let the two tensor operators be of rank
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K1 and K2, and denote the operators byT1 and T2, and their tensor product byT . Since
the addition of three angular momentum variables,K, K1 and K2, is involved in creating
T from T1 andT2 the formula for the reduced matrix element ofT (e.g. equation 15.23 in
reference [4], and problem 1.6 in [5]) contains a 6j -symbol. The formula in question has
the form

(J ||T (K)||J ′) ∝
∑

J̄

(J ||T1(K1)||J̄ )(J̄ ||T2(K2)||J ′)
{

K1

J ′
K2

J

K

J̄

}
. (3.2)

From this formula we can infer that to achieve the desired form for the scattering length,
namely, a spherical tensor, the sum over the intermediate states, labelledη in (2.1), runs
over the angular momentum label,J̄ , of the intermediate states. By implication, the sum
in (2.1) is to include, withJ̄ , the magnetic quantum number,M̄, which removes from the
scattering length the geometrical information on the intermediate states. (Formula (3.2) is
introduced simply for the purpose in our presentation of making plausible the outcome of
the calculation described in the appendix, which makes no use of (3.2).) The price to be
paid in carrying through the steps described is the neglect in the energy denominator of
the dependence of the transition energy on the relevant part of the quantum labelη. The
energy is now replaced by a mean value for the distribution of energy levels covered by the
quantum numbers̄J andM̄ in η.

The error in the interpretation of empirical data, caused by discarding in the scattering
length the dependence of the energy denominator onη, will be small if the spread in energy
of the states labelled bȳJ , M̄ is sufficiently small. Here, two other energy scales are
relevant, namely, the total decay width,0, and the resolution in energy available in the
experiment. If the spread in energy of theJ̄ -states is similar or, better, smaller than these
energies the loss of useful information in the interpretation will be modest, and possibly
tolerable. A related consideration refers to the observed relative weight of contributions
that can be labelled by the total angular momentum of the core state which participates in
absorption. A good example of the dominance by one partner over the other is observed
in uranium; the dichroic signal at the 3d3/2 edge is very strong relative to the signal at the
3d5/2 edge.

By way of illustrating the energies involved in the discussion we briefly consider data for
absorption at some d core states: 3d–4f(M4,5), 4d–4f (N4,5) and 4d–5f. For the lanthanides
absorption at the N4,5 edges occurs in the soft region of the x-ray spectrum (100–200 eV)
and the spread in energy of the intermediate states is around 20 eV [2, 6]. The M4,5 edges of
the lanthanides are in the region 830–1520 eV of the x-ray spectrum. The major absorption
peaks are assigned to the core states 3d5/2 and 3d3/2 whose separation in energy increases
from 16 eV for La to 45 eV for Tm, and the associated decay widths vary from 0.2 eV
to 0.6 eV [3]. We also mention the 4d–5f transition in92U, reference [7]. In this case,
the separation in energy of the core states is estimated to be about 40 eV, and0 ∼= 2 eV.
Of course, our idealized scattering length incorporates a sum over the core states, so it
lacks detail on a scale attributable to the structure in the intermediate-state spectrum created
by the individual identities of the d5/2 and d3/2 core states. Lastly, we note that a recent
and careful investigation of circular dichroism in uranium monosulphide places a±30%
uncertainty in the scaling of the measured dichroic signal [13]; problems created by the
properties of actinide materials contribute to the uncertainty and the problems are absent in
the preparation of foils of lanthanide elements.

The formula proposed for the scattering length is derived in appendix A; henceforth, it
is referred to as anidealizedscattering length in view of the reduction in the information it
contains on the intermediate states. The idealizedf has a structure which can be inferred
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from the two formulae cited in the foregoing discussion, scilicet, it is a sum of tensor
operators of rankK. Referring to (3.2), for the matrix elements in the scattering length
K1 = K2 = 1, and the rank of the tensors is correct in the dipole limit to the current
operator given by (2.2). The coupling ofK, K1 andK2 obeys a triangular condition, from
which it follows thatK = 0, 1 and 2.

Let us add a few words about the choice of quantum numbers of the intermediate states
that are summed over in creating the idealized scattering length. The choice ofJ̄ and M̄

appears to be almost the minimal set required to bring the product of matrix elements to
a structure of a spherical tensor (actually a sum of three spherical tensors labelled by their
rankK). These quantum numbers are not a complete set, of course. A sum on all quantum
numbers required to define the intermediate states can be accomplished by using the property
of closure. In this case one also reaches a function for the product of matrix elements
which is a sum of spherical tensors, created by spherical harmonics. However, the function
contains no information at all about the core state, and the sum of spherical harmonics does
not contain a spherical harmonic of rank one. As we shall presently see, the tensor of rank
one in the idealized scattering length carries information about the magnetic moment of the
absorbing atom. We conclude that a sum over all quantum numbers, accomplished by the
property of closure, leads to a serious loss of useful information about the magnetic atom.

Because the idealizedf is proportional to spherical tensors all the algebra for such
tensors at our disposal is readily applied. In particular, the matrix elements of the idealized
f for a valence shell with two or more holes can be written down, in terms of Racah
unit-tensor operators, directly from a knowledge of the matrix element for one hole in
the valence shell. We provide the unit tensors for bothjj - and Russell–Saunders (SL-
coupling) coupling schemes for spin (S) and orbital (L) angular momentum. Here, we
gather the essential material for the idealized scattering length with a view to using it to
describe absorption and resonance-enhanced scattering by magnetic materials.

Let 1 be a mean value for the separation in energy between the initial state,µ, and
the intermediate states,η. The corresponding quantity for the intermediate states and the
final state,µ′, is 1′ (=Eη − Eµ′). The states labelledµ andµ′ belong to an equilibrium
configuration of the atom. The primary radiation has an energyE = 2πh̄c/λ, wave vectorq
and polarization vectorε. (Cartesian components ofε are purely real.) The corresponding
quantities for the secondary beam carry a prime. The scattering vectork = q − q′, and the
atoms are at positions defined by vectors{R0}.

The idealized scattering length appropriate for the description of the scattering of x-rays
with an energyE close to1 is

f (µ; µ′) = −
(

2πe

λ

)2(
1′

1

)
{E − 1 + i0/2}−1

∑
R0

exp(ik · R0)Z(µ; µ′: R0). (3.3)

Here,Z is created from the matrix elementϒ defined in (A.4);

Z(µ; µ′: R0) =
∑
qq ′

(ε′
qεq ′)∗ϒqq ′(µ; µ′: R0). (3.4)

For atomic orbitals the labels in the initial and final atomic states areµ = θJM, and
µ′ = θ ′J ′M ′.

The idealized scattering length (3.3) is used later to discuss resonance-enhanced
scattering. The corresponding expression for the attenuation coefficient,γ , is also
conveniently expressed in terms ofZ. In this instance, though,Z is evaluated for the
condition of elastic scattering and a forward-scattering geometry (q = q′). Also, the mean
value ofZ for this condition occurs inγ averaged with respect to states of polarization in
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the primary beam. We denote the mean value ofZ averaged with respect to the polarization
by 〈Z〉0. The appropriate formula for the attenuation coefficient is

γ = 2πλn0

(
e1

h̄c

)2

δ(E − 1)〈Z〉0 (3.5)

wheren0 is the density of particles in the target foil. In arriving at the formula (3.5) we
have exercised the limit0 → 0 and this creates the delta function, which is zero unless
E = 1. The action of the delta function setsλ = (12.40/1) Å with 1 expressed in units
of keV.

It is convenient to introduce quantitiesC, D, and E which contain, respectively, the
reduced matrix elements of the tensorsT (0), T (1), andT (2) multiplied by the other factors
in (A.4), from whichZ(µ; µ′) is constructed according to its definition (3.4). The value of
D does not depend explicitly on the number of particles in the open valence shell. In fact,
all tensors of an odd rank—D is built from T (1)—have the remarkable property of being
independent of the number of particles and diagonal with respect to the seniority quantum
number. The value ofD is determined solely by the quantum numbers which define the
initial and final states in the matrix elementZ. The functionZ(µ; µ′) has the dimension
(length)2.

Specializing to the case where a hole in the valence shell with angular momentuml is
transferred to a core state with angular momentuml̄ = l − 1, and using results presented in
appendix A, we find the following results.

Russell–Saunders coupling.For the ln-configuration, withnh = 2(2l + 1) − n, and
θ = νSL whereν is the seniority quantum number, we have

C = C(θJ ; θ ′J ′) = 1
3nhδJ,J ′δθ,θ ′

l

(2l + 1)
〈l|R|l − 1〉2

D = D(θJ ; θ ′J ′) = δθ,θ ′
(L‖L‖L)

2(2l + 1)

[
(2J + 1)(2J ′ + 1)

]1/2

× (−1)1+S+J+L

{
J ′

L

L

J

S

1

}
〈l|R|l − 1〉2

E = E(θJ ; θ ′J ′) = 1

6

{
l(l + 1)(2l + 3)

(4l2 − 1)

}1/2

(θJ‖T (2)‖θ ′J ′)〈l|R|l − 1〉2.

(3.6)

An extensive tabulation of 3j - and 6j -symbols is found in reference [15]. Table 1 contains
values of the unit-tensor operatorV (2) needed to calculate the reduced matrix element of
T (2).

jj-coupling. We have thejn-configuration, withnh = (2j +1)−n. Some applications
of jj -coupling to describe magnetic properties of rare-earth atoms are found in reference
[10], where the main thrust is the theory of elastic and inelastic scattering of neutrons, and
reference [7]. Here

C = C(νJ ; ν ′J ′) = 1
3nhδJ,J ′δν,ν ′

l

(2l + 1)
〈l|R|l − 1〉2 (3.7a)

and for 26 nh 6 (2j − 1)

D = D(νJ ; ν ′J ′) = δJ,J ′δν,ν ′
(J‖J‖J )

2(2l + 1)
(2 − g) 〈l|R|l − 1〉2 (3.7b)

whereg is the Land́e factor. Fornh = 1 andnh = 2j the quantityD is obtained from (6.4)
using for the reduced matrix element the value given in (A.5), which is appropriate for one
particle. Note in (3.7) that bothC andD are diagonal with respect toJ andν. The quantity
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Table 1. (a) The jj -coupling scheme. Total angular momentum and seniority numbers for
the Hund’s-rule ground states of tripositive lanthanides together with the number of electrons
n = 2j +1−nh. The last column gives the reduced matrix element ofV (2) for the ground state
and the sign is appropriate to the number of holes in the shell. Our definition of the reduced
matrix element, in terms of fractional-parentage coefficients, is given in reference [10]. All
even-rank tensors are zero for a half-filled closed shell, and fornh = 1 the value of the reduced
matrix element for allK is (2K +1)1/2, and fornh = 2j it has the same magnitude and opposite
sign. In the first (second) shellj = 5

2 ( 7
2) and the Land́e factorg = 6

7 ( 8
7). The moment〈w101〉

in reference [7] is simply(2 − g)J/l, and the same formula applies for the Russell–Saunders
coupling scheme on using the appropriate value forg. (b) The Russell–Saunders coupling
scheme. The value of the reduced matrix element ofV (2) for the ground-state configuration
of tripositive lanthanides derived from Hund’s rules. The values forV (2) are obtained from
the tabulation of the reduced matrix elements ofU(2) found in reference [19] and the relation
V (K) = (2K + 1)1/2U(K). The reduced matrix element ofV (K) for a number of holes
=14− nh has the same magnitude and opposite sign to the value listed for the valuenh. For
nh = 0 andnh = 14 the reduced matrix element ofV (2) is zero. The Land́e factor is obtained
from formula (2.83) in reference [1].

(a) Configuration J n ν (νJ ||V (2)||νJ )

j = 5/2:
Ce3+ f 1 5

2 1 −√
5

Pr3+ f 2 4 2 2 − 1
7

√
165

Nd3+ f 3 9
2 3 3 0

Pm3+ f 4 4 4 2 1
7

√
165

Sm3+ f 5 5
2 5

√
5

Eu3+ f 6 0 6 0
j = 7/2:

Gd3+ f 7 7
2 1 −√

5

Tb3+ f 8 6 2 2 −2
√

65
33

Dy3+ f 9 15
2 3 3 − 1

7

√
170

Ho3+ f 10 8 4 4 0

Er3+ f 11 15
2 5 3 1

7

√
170

Tm3+ f 12 6 6 2 2
√

65
33

Yb3+ f 13 7
2 7

√
5

(b) Ground state nh (θ ||V (2)||θ)

2F 1
√

5

3H 2 1
3

√
715
14

4I 3
√

65
66

5I 4 −
√

65
66

6H 5 − 1
3

√
715
14

7F 6 −√
5

E is the same as for theSL-coupling with the reduced matrix element ofT (2) replaced
by (νJ ||T (2)||ν ′J ′); see table 1. For the particular case whereJ = J ′, which applies, at
a first level of approximation, in the interpretation of the attenuation coefficient and elastic
scattering cross-section, the quantityD has the same structure in the two coupling schemes
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that we employ.
At this juncture we can usefully summarize the properties of the scattering length when

the number of holes in the valence shell is assigned its boundary values. Fornh = 0 the
quantitiesC, D, andE are zero, and so is the resonance-enhanced scattering length, i.e. if
the valence shell in question is fully occupied by electrons the envisaged resonance process,
involving a transfer of a hole from an equilibrium configuration of the valence shell to a
core state, is forbidden. The conjugate statenh = 2j + 1, or 2(2l + 1), is characterized
by the valuesD = E = 0, while C attains its maximum value. Hence, as is physically
obvious, when there are no electrons in the valence shell there is no information in the
experiments in question, other than the total number of holes in the valence shell.

Table 2. (a) Components of the tensorX
(K)
Q defined by equation (3.8) on takingε′ = t and

ε = u. Here,t · u andt × u denote the conventional scalar and vector products, respectively,
of two vectors of rank one. (b) Definitions in terms of Cartesian components labelled(a, b, c).

(a) X
(0)
0 = − 1√

3
(t · u)

X
(1)
0 = i√

2
(t × u)0

X
(1)
±1 = ∓ 1√

2
(t0u±1 − t±1u0)

X
(2)
0 = 1√

6
(3t0u0 − t · u)

X
(2)
±1 = 1√

2
(t0u±1 + t±1u0)

X
(2)
±2 = t±1u±1

(b) t+1 = − 1√
2
(ta + itb), t0 = tc, t−1 = 1√

2
(ta − itb)

X
(1)
±1 = 1

2{(t × u)b ∓ i(t × u)a}
X

(2)
+2 + X

(2)
−2 = taua − tbub X

(2)
+1 + X

(2)
−1 = −i(tcub + tbuc)

X
(2)
+2 − X

(2)
−2 = i(taub + tbua) X

(2)
+1 − X

(2)
−1 = −(tcua + tauc)

If t = u = J , with iJ = J × J andJ · J = J (J + 1), thenX
(1)
±1 = − 1√

2
J±1.

In carrying out the sum over the components of the polarization vectors in the definition
of Z, equation (3.4), we profit from a compact notation based on a spherical tensor:

X
(K)
Q =

∑
qq ′

ε′
qεq ′(1q1q ′|KQ). (3.8)

In (3.8) we use a standard definition of a tensor formed using a Clebsch–Gordan coefficient.
A summary of the properties ofX(K)

Q used in this paper is provided in table 2. Here we

note thatX(1)
Q can be expressed as a linear combination of the Cartesian components of the

vector product of the polarization vectors. No such simple interpretation exists forX
(2)
Q .

In the setting of (3.4) the components ofε′ × ε andX
(K)
Q are with respect to the axes

of the magnetic atom at the site defined by the vectorR0. Hence, as indicated in (3.4),
the matrix elementZ depends onR0, although we may not always display it. In general,
the axes will change on moving from one atom to another, in a manner that depends on
the order adopted by the magnetic atoms, e.g. antiferromagnetic and spiral. The Cartesian
components of a vector in the axes of quantization for the magnetic atom are labelled
(a, b, c).

For some purposes, it is perspicacious to have a symmetric and compact notation for
the matrix elementZ. To this end we introduce another tensorI (K) with K = 1 and 2
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whose reduced matrix element is one. The scalar product ofI andX is defined, for allK,
by

I · X =
∑

q

(−1)qIqX−q (3.9)

where−K 6 q 6 K. For K = 1 the definition (3.9) is identical to the conventional scalar
product of two vectors. With this notation we arrive, directly from (3.4), (3.8), and (A.4),
at

Z(θJM; θ ′J ′M ′) = 〈JM|{(ε′ · ε)C + D
√

2I(1) · X(1) − E
√

6I(2) · X(2)}|J ′M ′〉.
(3.10)

This formula forZ is one of our key results. The three parts ofZ have direct physical
interpretations, as will emerge in subsequent applications to various problems. Anticipating
these applications, to some extent, we remark now that the first part ofZ on the right-hand
side of (3.10) is an isotropic term with no magnetic content. The second and third parts
have magnetic content, related, respectively, to the magnetic and quadrupole moment of the
atom. In the particular case whereJ = J ′ it is useful to use operator equivalents forI,
i.e. representI with X as defined in table 2 and use fort andu the total angular momentum
operator. We have more to say on this topic in subsequent sections.

While the representation of our result used in (3.10) has much to recommend it,
particularly in applications to events pertaining to oneJ -manifold, there are occasions
when a more explicit representation ofZ(θJM; θ ′J ′M ′) is useful. It can be written as the
sum of the following terms, labelled by the value ofm0:

m0 = 0 :

(ε′ · ε)C + (−1)J−M

[(
J

−M

1
0

J ′

M

)
iD(ε′ × ε)0 +

(
J

−M

2
0

J ′

M

)
E(ε′ · ε − 3ε′

0ε0)

]
|m0| = 1 :

(−1)J−M
√

2

{
−

(
J

−M

1
m0

J ′

M − m0

)
DX

(1)
−m0

+
(

J

−M

2
m0

J ′

M − m0

)
E

√
3X

(2)
−m0

}
|m0| = 2 :

(−1)J+1−M

(
J

−M

2
m0

J ′

M − m0

)
E

√
6X

(2)
−m0

.

(3.11)

The term withm0 = 0 in (3.11), which is consistent with a cylindrical symmetry of the
valence-shell wave function, is exactly the quantity used in references [1, 9]. In the latter
works, the quantitiesC, D, andE, for one hole in the valence shell, are given as a sum
over the total angular momentum quantum number, which labels the intermediate states, of
the product of two reduced matrix elements of the dipole operator. Here, the sum over the
product ofnj -symbols is carried out, using the method described in the appendix, and gives
the values forC, D, andE quoted in (3.6) and (3.7).

4. The attenuation coefficient

The attenuation coefficient is calculated from formula (3.5). At a first level of approximation,
the thermal average value ofZ which enters (3.5) might be derived from (3.11) evaluated
for θ = θ ′ andJ = J ′. The wave functions are linear combinations of several states within
theJ -manifold, with coefficients determined by the physical and chemical properties of the
absorbing atom.
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In general, however, the ground-state configuration is not a state with a uniqueθ and
J . Spin–orbit magnetic interactions and electron–electron Coulomb interactions mix states
of different θ andJ into the state determined by Hund’s rules. The formulae given in the
previous section, for the quantitiesC, D, andE, permit a treatment of the general case. As
might be anticipated, the physical interpretation of results for the idealized scattering length
in the general case is not as simple and elegant as for a pureθ - or J -state. To see this look
at D(θJ ; θ ′J ′) for Russell–Saunders coupling. This quantity is diagonal with respect toθ

and not diagonal inJ andJ ′, and forJ ′ = J ± 1 one does not have a nice result likeD

proportional to 2− g. Having sounded this note of caution about the likely structure of a
realistic ground state, we continue in this, and the next section, by way of an illustration, to
consider a ground state of the absorbing atom built from aJ -manifold and a unique value
of θ .

Within a J -manifold we can adopt the familiar practice of using operator equivalents,
for I(1) andI(2), based on the operators of total angular momentum [8]. It seems natural
to chooseJ to represent the operatorI(1), and, since this operator has been defined
to have a reduced matrix element equal to one we needI(1) = J/(J ||J ||J ), where
(J ||J ||J ) = {J (J + 1)(2J + 1)}1/2. It is convenient to representI(2) by an operator,
denoted byQ, constructed in accord with the tensor of rank 2 whose elements are listed
in table 2, i.e.Q has the same structure as the combination of polarization vectors inX(2)

which is defined by (3.8). A straightforward calculation gives

(J ||Q||J ) = (J ||J ||J ){ 1
6(2J − 1)(2J + 3)}1/2.

It is to be noted that the reduced matrix element ofQ vanishes forJ = 1/2, as expected
in the light of the fact that for this value ofJ the operatorJ 2

a = 1/4.
Our expression for〈Z〉0 to be used in (3.5) is(l̄ = l − 1)

〈Z〉0 = 〈l|R|l̄〉2

{
1

3
nh

l

(2l + 1)
− P2q̂ · 〈L〉

2(2l + 1)
− E0(θJ )〈Q〉 · ||X(2)||

}
. (4.1)

Here,q̂ is a unit vector in the direction of propagation of the beam,

〈l|R|l̄〉2E0(θJ ) =
√

6E(θJ ; θJ )/(J ||Q||J )

andE(θJ ; θJ ) is obtained from (3.6).
Let us comment on each term on the right-hand side of (4.1). The first term, often

described as the isotropic term (apart from a factor 3), stems directly fromC(θJ ; θJ ). The
value of ε′ · ε for a forward geometry is independent of the state of polarization in the
primary beam, and has the value one; this and other combinations of polarization vectors
needed to construct (4.1) are gathered together in table 3. As with the other two terms
in (4.1), we have factored out in (4.1) the square of the radial integral contained inC.
The second term in (4.1), proportional to the mean helicity in the primary beam of x-rays,
P2, is derived fromD(θJ ; θJ ) and the relationL = (2 − g)J , where g is the Land́e
factor. The first two terms in (4.1) are the same for thejj -coupling and Russell–Saunders
coupling schemes. (For a given configuration of the valence electrons, the numerical value
of g depends on the coupling scheme employed.) The similarity in results for the two
coupling schemes falters if the ground-state wave function contains more than one value of
J and the values includeJ and J ± 1, for then there are off-diagonal contributions inD

in Russell–Saunders coupling and the gyromagnetic factor is not given by the formula of
Land́e.

In the third, and last, termE0(θJ ) has a value which depends on the coupling scheme.
The notation of vertical double bars aroundX(2) denotes an average of the polarization
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Table 3. Combinations of polarization vectors in the attenuation coefficient averaged with
respect to states of polarization in the primary beam described byP = (0, P2, P3); a method for
performing the average over states of polarization is described in reference [1]. In the forward-
scattering geometryq = q′. (The anglesα, β andγ define the axes(a, b, c) relative to(x, y, z)

using the Euler angles defined in reference [5].)

||ε′ · ε|| = 1

||ε′ × ε|| = iP2q̂

||3ε′
cεc − ε′ · ε|| = 1

2

[
(3α2

c − 1)(1 + P3) + (3β2
c − 1)(1 − P3)

]
||ε′

bεc + ε′
cεb|| = αbαc(1 + P3) + βbβc(1 − P3)

||ε′
aεc + ε′

cεa || = αaαc(1 + P3) + βaβc(1 − P3)

||ε′
aεa − ε′

bεb|| = 1
2

[
(α2

a − α2
b)(1 + P3) + (β2

a − β2
b )(1 − P3)

]
||ε′

aεb + ε′
bεa || = αaαb(1 + P3) + βaβb(1 − P3)

Here:
αa = − sinβ cosγ
αb = sinβ sinγ

αc = cosβ
βa = (cosβ − 1) cosα cosγ + cos(α + γ )

βb = (1 − cosβ) cosα sinγ − sin(α + γ )

βc = cosα sinβ

vectors with respect to the polarization in the primary beam, described by a Stokes vector
P = (0, P2, P3); our definition follows the one used in reference [1]. Referring to table 3
we find that||X(2)|| does not depend on the mean helicity. The full expression required in
(4.1), written in terms of Cartesian components ofε, ε′ and J in the set of axes labelled
(a, b, c) is

〈Q〉 · ||X(2)|| = 1
2{〈J 2

c − 1
3J (J + 1)〉||3ε′

cεc − ε′ · ε||
+ 〈JbJc + JcJb〉||ε′

bεc + ε′
cεb|| + 〈JaJc + JcJa〉||ε′

aεc + ε′
cεa||

+ 〈J 2
a − J 2

b 〉||ε′
aεa − ε′

bεb|| + 〈JaJb + JbJa〉||ε′
aεb + ε′

bεa||}. (4.2)

The angular momentum operators in (4.2) arise in combinations which are Hermitian, so the
thermal average values are purely real quantities. Values of the combinations of polarization
vectors in (4.2) averaged over states of the primary polarization,P , are listed in table 3
where they are expressed in terms of Euler angles that relate the axes attached to the
experimental geometry(x, y, z) and the quantization axes(a, b, c); relevant details about
the Euler angles are listed in table 4. After averaging over all possible directions of the
axis of quantization for the magnetic state of the atom, to create a condition of spherical
symmetry, all terms inX(2) vanish, as does the corresponding average ofX(1), of course.
By way of another example, consider the case whereβ = 0, for which the axesz and c

coincide, and the rotation ofa andb relative tox andy is the angle(α + γ ) = δ, say. In
this special case, we find from (4.2) and entries in table 3

〈Q〉 · ||X (2)|| = 1
4{〈J 2

c − 1
3J (J + 1)〉(1 + 3P3)

+ (1 − P3)[〈J 2
a − J 2

b 〉 cos 2δ − 〈JaJb + JbJa〉 sin 2δ]}. (4.3)

It is interesting to note from (4.3) that, forβ = 0 andP3 = 1 it is not possible to observe
the terms which describe departures from cylindrical symmetry about thec-axis. A second
example of interest is to align the axis of quantization and the direction of propagation of
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the beam of x-rays, achieved on settingα = β = (π/2). One finds

〈Q〉 · ||X(2)|| = 1
2{〈 1

3J (J + 1) − J 2
c 〉 + P3[〈J 2

a − J 2
b 〉 cos 2γ − 〈JaJb + JbJa〉 sin 2γ ]}.

(4.4)

For the experimental geometry to which (4.4) applies, the attenuation coefficient is
independent of the linear polarization described byP3 if the atom has a cylindrical, or
higher, magnetic symmetry.

Table 4. (a) Axes(x, y, z) defined with respect to the geometry of the experiment, in which
the primary beam, travelling in a direction defined by the unit vectorq̂, is deflected through an
angleθ to a direction defined bŷq′. (b) Axes(a, b, c) for an atom at a site labelled by the vector
R0. The Euler anglesα, β andγ are defined following the scheme used in reference [5]. (c)
Polarization vectors, which describe pureσ - andπ -polarizations;σ -polarization is perpendicular
to the plane of scattering, defined byq andq′, andπ -polarization lies in the plane.

(a) −2 sin(θ/2)x̂ = (q̂ − q̂′)
2 cos(θ/2)ŷ = (q̂ + q̂′)
sin(θ)ẑ = (q̂ × q̂′)

(b) Unit vectors for the two sets of axes are:
â = x̂(cosα cosβ cosγ − sinα sinγ ) + ŷ(sinα cosβ cosγ + cosα sinγ ) − ẑ sinβ cosγ
b̂ = x̂(− cosα cosβ sinγ − sinα cosγ ) + ŷ(− sinα cosβ sinγ + cosα cosγ ) + ẑ sinβ sinγ

ĉ = x̂ cosα sinβ + ŷ sinα sinβ + ẑ cosβ

(c) With reference to the axes(x, y, z):
εσ = ε′

σ = (0, 0, 1)

επ = x̂ cos(θ/2) + ŷ sin(θ/2)

ε′
π = x̂ cos(θ/2) − ŷ sin(θ/2)

The thermal average values of the operators in (4.1)–(4.4) are evaluated for the
appropriate magnetic state of the absorbing atom. In the paramagnetic phase〈J〉 = 0. The
corresponding values of products of Cartesian components ofJ , in (4.2), (4.3) and (4.4),
can have trivial values, e.g. in a truly isotropic environment all cross products, e.g.〈JaJb〉,
are zero, and the diagonal terms are all equal and have the valueJ (J + 1)/3. Using these
results in (4.2) one finds that all terms vanish. Hence, for a spatially isotropic environment
the only contribution to〈Z〉0 which does not vanish is the first term on the right-hand side
of (4.1), proportional to the number of holes in the valence shell. Another simple case is
when the environment has cylindrical symmetry about thec-axis. In this case all terms
in (4.2) vanish apart from〈J 2

c − J (J + 1)/3〉. If the c-axis is singled out by a magnetic
energy=−B(Jc)

2, the result

〈J 2
c − 1

3J (J + 1)〉 =
(

B

T

)
1

45
J (J + 1)(2J − 1)(2J + 3)

is correct to first order inB/T , where T is the temperature in units of Boltzmann’s
constant. Magnetic order is induced by a Heisenberg interaction between the spin moments
(g−1)J(R0). If this interaction is isotropic and treated within the mean-field approximation
one finds〈J 2

c 〉 = J 2 at T = 0, and〈J 2
c 〉 decreases with increasing temperature to the value

J (J + 1)/3 at the ordering temperature. More results for a molecular-field model are found
in reference [1].

As a final topic in this section, we consider so-called sum rules for the dichroic signal.
If we integrate the attenuation coefficient (3.5) with respect toE in the vicinity of 1 the
signal so obtained is proportional to〈Z〉0 which carries all available information about
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the physical properties of the absorbing atom. Ratios of〈Z〉0 for different settings of the
polarization in the primary beam of x-rays are called normalized sum rules of the dichroic
signal. InP = (0, P2, P3) keep the magnitudes ofP2 andP3 fixed and reverse the sign of
P2, the mean helicity. The difference in the signals is

〈Z(P2)〉0 − 〈Z(−P2)〉0 = −〈l|R|l̄〉2P2q̂ · 〈L〉/(2l + 1) (4.5)

which, apart from some constants, is a result given in [9]. The expression for the difference
signal is quite simple and has a strong physical appeal. However, this expression is derived
from the mean value ofZ within a singleJ -manifold which is not likely to be strictly
accurate.

Thole et al [11] normalized the difference signal by the isotropic signal, defined to be
three times the isotropic contribution to〈Z〉0 given by (4.1), and their normalized sum rule,
for circular dichroism, is thus

{〈Z(P2)〉0 − 〈Z(−P2)〉0}
〈l|R|l̄〉2nh {l/(2l + 1)} = −P2q̂ · 〈L〉

nhl
. (4.6)

Note that our derivation of the sum rule holds for bothjj -coupling and Russell–Saunders
coupling schemes. The result (4.6) has been obtained by a number of authors, using various
mathematical methods of varying degrees of opacity; see [1, 12], and references therein.
In the present setting, the point to note is that the derivation of the normalized sum rule
reported in [11] is also made without approximations, for an atomic model of the kind
employed here. So, we deduce that the idealized scattering length that we put forward
embodies the same physical picture as the one used by Tholeet al. To summarize, our
idealized scattering length gives the correct value for the normalized, circular dichroic sum
rule, and, as a bonus, the truth of the sum rule is almost obvious to the eye. Set against
this, the idealized scattering length, and the value for〈Z〉0 obtained from it, cannot answer
questions about integrated signals associated with partners to a core edge [12].

5. Resonance-enhanced Bragg diffraction

The value of the scattering length which describes Bragg diffraction is its mean value,
averaged with respect to all atomic variables. We denote this scattering length by〈f 〉,
where, as in previous sections, angular brackets denote that a thermal average is made of
the enclosed quantity. The cross-section for Bragg diffraction is proportional to

σ = || |〈f 〉|2|| (5.1)

where the double vertical bars denote an average with respect to the states of polarization in
the primary beam. While a realistic wave function for the ground state of an open valence
shell is likely to contain various contributions, with different values ofθ andJ , by way of
orientation, we evaluate the mean scattering length for a pure state which contains one set
of values forθ andJ , and possibly several values of the magnetic quantum number. For
this very special type of ground state, we can use the operator equivalents introduced in the
previous section.

From (3.3) evaluated forE = 1, one finds

〈f 〉 =
(

2i

0

)(
2πe

λ

)2 ∑
R0

exp(ik · R0) 〈Z(µ; µ: R0)〉. (5.2)
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The result

〈Z(µ; µ: R0)〉 = 〈l|R|l̄〉2

{
1

3
nh

l

(2l + 1)
(ε′ · ε) + i

〈L〉 · (ε′ × ε)

2(2l + 1)
− E0〈Q〉 · X(2)

}
(5.3)

follows directly from (3.11). The functionE0 appears also in (4.1) and it is proportional
to E(θJ ; θJ ). The explicit form of the coefficient ofE0 in (5.3) is readily deduced from
(4.2). The dependence of〈Z〉 on the position of the atom,R0, arises from the dependence
of the atomic variables〈L〉 and 〈Q〉 on the axes of quantization(a, b, c) used to calculate
the magnetic properties of the atom at siteR0.

The condition onk for Bragg diffraction arises from translational invariance of〈Z〉 in
a crystal. Let there beN unit cells, and denote the magnetic reciprocal-lattice vectors by
{τ }; then

〈f 〉 = 2i

0

(
2πe

λ

)2

N
∑

τ

δk,τ F(τ ). (5.4)

Here, the Kronecker delta function is unity ifk = τ and zero otherwise, and the magnetic
unit-cell structure factor

F(τ ) =
∑

d

exp(iτ · d) 〈Z(µ; µ: d)〉 (5.5)

in which ther atoms in the cell are at positions defined byr −1 non-null vectors{d}. Work
in [14] addresses the calculation of the unit-cell structure factor for a variety of states of
magnetic order.

Possibly the biggest headache in calculating the cross-section (5.1) is performing the
average over the states of polarization in the primary beam of x-rays. At least, this is the
case for a ferromagnet since, in this instance, all components in〈Z〉 add coherently. In
other examples of magnetic ordering the magnetic and non-magnetic components of〈Z〉
might not add coherently and, in consequence, the intensity of Bragg peaks can be assigned
to pure magnetic or pure chemical order in the crystal.

To illustrate the structure which is possible in the cross-section for Bragg diffraction
we consider a ferromagnetic component toF(τ ), and reduce the complexity of〈Z〉 to one
consistent with magnetic cylindrical symmetry. The form ofF(τ ) is taken to be

F(τ ) = A1(ε
′ · ε) + iA2m · (ε′ × ε) + A3(ε

′ · m)(ε · m) (5.6)

wherem is a unit vector that defines the preferred magnetic axis. The coefficientA2 is
simply read off by inspection of (5.3), and it is proportional to|〈L〉|. On the other hand,
A1 is a sum of the isotropic contribution to〈Z〉 and the part of the coefficient of〈Qc〉
proportional toε′ · ε, and A3 is the remaining part of this contribution; cf. (4.2). In the
following expression for the average of the absolute square of (5.6), with respect to states of
polarization described by a Stokes vectorP = (0, P2, P3), we use the coordinate system for
the geometry of the diffraction experiment which is the subject of entries in table 4. (The
coordinate system that we use is the same as the one described in reference [1], to which the
reader is referred for details of the technique, based on a density matrix representation, for
executing the average over states of polarization.) One obtains, for the unit-cell structure
factor (5.6), the result

|| |F |2|| = 1
2(1 + P3)(A1 + A3m

2
z)

2 + 1
2(1 − P3)(A1 cosθ + A3(ε

′
π · m)(επ · m))2

+ A2
2

[
(m · q̂′)2 + (1 − P3) sinθ( 1

2m2
z sinθ − mxmy)

]
+ A2

3m
2
z

[
(m · ε′

π )2 + (1 − P3)mxmy sinθ
]
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−P2A2
[
A1m · (q̂ + q̂′ cosθ) + A3(m · q̂′)(m2

z cosθ + (ε′
π · m)(επ · m))

]
.

(5.7)

Here, mx, my , and mz are the components of the unit vectorm along the axes(x, y, z),
and A1, A2, and A3 are taken to be purely real quantities. The foregoing result can be
manipulated to a variety of equivalent forms. The form chosen in (5.7) has the advantage
of clearly displaying the simplification which occurs at a diffractometer on a source of x-
rays produced by a particle accelerator whereP2

∼= 0 andP3
∼= 1, to a good approximation,

is the standard setting.
A few features of the result (5.7) merit comment. IfP3 = −1 (NB P 2

2 + P 2
3 6 1) and

the beam is deflected throughθ = π/2 the cross-section is independent ofA1. With this
setting, the cross-section depends onA2 and A3, and in the paramagnetic phaseA2 = 0,
and A3 = 0 for an isotropic environment. The term containingP2, the mean helicity, is
linear in A2, as expected. If the componentsA1 andA3, andA2 do not add coherently for
the chosen value ofτ then one has either to set in (5.7)A1 = A3 = 0 or A2 = 0. For an
isotropic paramagnetA2 = A3 = 0, and the right-hand side of (5.7) reduces to the result
obtained for Thomson scattering. For random orientations ofm

|| |F |2|| = (A1 + 1
3A3)

2 + 1
3A2

2 + 7
45A

2
3 + 1

2(1 − P3) sin2 θ
[

1
3A2

2 − (A1 + 1
3A3)

2 − 1
45A

2
3

]
.

(5.8)

Note that (5.8) does not depend onP2 or the sign ofA2, which is to be expected, of course.
Lastly, we choose for the Stokes parameters the extreme valuesP2 = 0 andP3 = 1, which
describes a state of complete polarization perpendicular to the plane of scattering;

|| |F |2|| = A2
1 + 2A1A3m

2
z + A2

2(m · q̂′)2 + (A3mz)
2
{
1 − (m · q̂′)2

}
. (5.9)

It is interesting to note that there is an interference between the componentsA1 and A3,
of the structure factor, which vanishes if the moment lies in the plane of scattering, and
mz = 0.

6. Resonance-enhanced inelastic scattering

The differential cross-section for resonance-enhanced inelastic scattering by one atom is(
dσ

dE′

)
=

(
E′

E

) ∑
µµ′

pµδ(h̄ω + Eµ − Eµ′)|| |f (µ; µ′)|2||. (6.1)

This result is independent of the scattering wave vector. We have defined ¯hω = E − E′,
and the conservation of energy leads toE′ = 1′ for E = 1. Hence, the scattering length
to appear in (6.1), at the condition of resonance, is

f (µ; µ′) =
(

2i

0

)(
2πe

λ

)2(
E′

E

)
Z(µ; µ′). (6.2)

In (6.1) there is a sum over all final states, and an average over all of the initial states
weighted bypµ, and the sum overpµ is normalized to unity.

The features of inelastic events depend on the coupling scheme for angular momenta.
Let us start by considering thejj -coupling scheme. Fornh = 1 andnh = 2j one replaces
T by t whose reduced matrix element is given by (A.5). Inelastic transitions are between
states with total angular momentumj and j ′, and proceed via the tensors withK = 1
andK = 2 in D andE, respectively. The appropriate expression forD is (6.4), whereas
(3.7) applies to elastic events (j = j ′) for nh = 1 andnh = 2j , and elastic and inelastic
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events fornh equivalent holes and 26 nh 6 (2j − 1). The quantityE is obtained from
the expression given in (3.6) evaluated with the appropriate value of the reduced matrix
element ofT (2), i.e. the result in (A.5) andK = 2.

Non-equivalent particles are handled by techniques described in reference [4]. Here, we
consider the case of two particles, which is of interest in studies of some actinide atoms.
Let the statesj2 and (j ′j ) have total angular momentumJ , andJ ′, respectively, and set
j 6= j ′. The allowedJ are restricted to the even integer values 0, 2, . . . , (2j −1), cf. (A.9),
whereasJ ′ merely satisfies the triangle conditions|j − j ′| 6 J ′ 6 (j + j ′) and, as we will
see,|J − K| 6 J ′ 6 (J + K). The reduced matrix element ofT (K) needed in (A.4) is

(J ||T (K)||J ′) = (j ||t (K)||j ′)
√

2(−1)K+j+j ′ {(2J + 1)(2J ′ + 1)}1/2

{
J

j ′
K

j

J ′

j

}
. (6.3)

The phase factor in (6.3) is for a state (j ′j ) with angular momentumJ ′, and it is different
for the state ordered (jj ′). Also, for j 6= j ′ the eventj2 → j ′2 is forbidden with a one-
particle operator. The value forE is obtained by using (6.3) in the expression given in
(3.6). However, the value forD is

D = 1

2

{
l(l + 1)

(2l + 1)

}1/2

(J ||T (1)||J ′)〈l |R| l̄〉2 (6.4)

which reduces to the expression for two or more equivalent holes given in (3.7) when the
appropriate value is taken for the reduced matrix element, namely (A.10) and (A.12). For
non-equivalent particles the quantityD is not diagonal with respect toJ , andJ ′ = J and
J ′ = J ± 1. (NB The same conditions hold fornh = 1 andnh = 2j , with J = j and
J ′ = j ′.) Sincej 6= j ′ the reduced matrix element ofT (0) is zero, and from this it follows
that C is zero.

Returning to the case ofn equivalent particles, it remains to consider the case where
2 6 nh 6 (2j − 1). Inspection of the results forC and D in (3.7) show that they are
diagonal with respect toJ . So, in thejj -coupling scheme, transitions between states with
J 6= J ′ can only proceed viaE, and the selection rule isJ ′ = J ± 1, andJ ′ = J ± 2. As
we noted, transitions viaD, in addition toE, are allowed fornh = 1 or nh = 2j .

In the Russell–Saunders schemeD is diagonal with respect toθ ≡ νSL. Hence, this
term contributes to transitions withJ ′ = J ± 1 provided that the initial and final states of
the valence shell are in the same multiplet. Looking atE one finds that it is diagonal with
respect toS, and the selection rule on transitions isJ ′ = J ± 1, andJ ′ = J ± 2.

By way of an orientation to the magnitude of inelastic events in resonance-enhanced
scattering we consider transitions between two states each completely described by one set
of labelsθJ . In addition, we assume that the spread in energy of states with respect to
the magnetic quantum numbers is too small to resolve in an experiment. The appropriate
cross-section is proportional to|Z(µ; µ′)|2, with µ = θJM and µ′ = θ ′J ′M ′, summed
over M ′, and summed overM with a degeneracy factor 1/(2J + 1). If J 6= J ′ there is no
contribution to the cross-section fromC, since it is diagonal in this quantum number. We
obtain the result∑

MM ′

1

(2J + 1)
|Z(µ; µ′)|2 = 1

(2J + 1)
{ 2

3D2|X(1)|2 + 6
5E2|X(2)|2}. (6.5)

Note that there is no term inDE. Also, |X (1)|2 = 1
2(ε′ × ε) · (ε′ × ε), and, if we set aside

the influence of a partial polarization of the primary beam,

|| |X (1)|2|| = 1
4(2 + sin2 θ)
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together with

|| |X(2)|2|| = 1
12(13+ cos2 θ).

In these two expressions,θ is the angle through which the secondary beam is deflected
relative to the direction of the primary beam. The value of|X(1)|2 averaged with respect
to states of partial polarization in the primary beam is found in reference [1].

Turning to the question of the magnitude of inelastic events we first consider a few
numbers for a configuration f12 and a Russell–Saunders ground state3H6, which is a
zeroth-order model for thulium. BothD and E contribute in the transition to3H5, and
we find

D(3H6; 3H5) = −0.235〈l|R|l̄〉2

E(3H6; 3H5) = −0.096〈l|R|l̄〉2.

Relative to the weight of the elastic event the inelastic contribution fromD is quite
significant, namely,

D(3H6; 3H5)

D(3H6; 3H6)
= −0.169.

Transitions to3H4 and 3F4 can only proceed throughE, and we find

E(3H6; 3H4) = −0.132E(3H6; 3H5)

and

E(3H6; 3F4) = 0.266〈l|R|l̄〉2.

To conclude, we give some of the corresponding values for f2 treated within thejj -coupling
scheme. Forj = 5

2 andJ = 4, the elastic value of the quantityD is

D(4; 4) = 1.095〈l|R|l̄〉2

which is now compared to values forD andE calculated for transitions to the states of the
configuration( 7

2, 5
2), and derived from (6.3). We chooseJ ′ = 4 and find

D(j24; j ′j4) = −0.102〈l|R|l̄〉2

and

E(j24; j ′j4) = −0.104〈l|R|l̄〉2.

So, once more, the weight available for inelastic transitions is only an order of magnitude
smaller than for the elastic contribution. Transitions within ajn-configuration can only be
made viaE, sinceC and D are diagonal with respect toJ , and transitions between the
j = 5/2 andj = 7/2 states of equivalent electrons are forbidden.

7. Summary

A formulation of the absorption and resonance-enhanced scattering of x-rays by a magnetic
material is put forward. Its main virtue is seen to lie in the possibility for greater use to
be made of physical intuition at an atomic level of detail. The scattering length, common
to absorption and resonance-enhanced scattering, in the proposed interpretation is built of
quantities related to the equilibrium configuration of the atoms, and also obtainable from
the interpretation of empirical data gathered using other techniques, firmly established as
valuable quantitative tools of investigation, e.g. NMR, Mössbauer spectroscopy and the
scattering of beams of neutrons.
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The formulation which is proposed lies between two extreme approaches that one can
envisage to the calculation of the scattering length. On the one hand, all variables relating
to the virtual, intermediate states in the scattering length can be removed by completely
ignoring the structure in the energy spectrum of the intermediate states followed by the use
of the closure relation for the states. In this extreme, the scattering length is independent
of the magnetic moment of the atom; all of the magnetic information that remains relates
to even-order moments of the valence electrons. The other extreme is to calculate all of
the wave functions and energies of the intermediate states and the matrix elements which
appear in the scattering length. This task demands the resource of a tried and tested computer
program for atomic structure, for all but the simplest example of one hole in the valence
shell. Most importantly, though, it is difficult in this extreme case to directly relate the
calculated scattering length to quantities of interest, to wit, quantities which arise in the
interpretation of potentially complementary experiments and theoretical developments in
magnetism. In the foregoing framework of reasoning, the scattering length that we have
proposed imposes a coarsened resolution on the structure in the spectrum of intermediate
states, and does not discriminate between spin–orbit-split partners in an absorption edge.
Set against this, with the less than perfect resolution applied to the intermediate states,
the scattering length is still sensitive to the magnetic moment and this, and all other
atomic contributions, are immediately recognizable in the formulation. Whether or not the
coarsening can be tolerated in applications depends on several factors, among them being
the objectives in the experimental investigation, the indigenous broadening of the level
structure of the intermediate states, and the resolution applied in the experiments. There
are cases where our framework is the exact framework for the interpretation of empirical
data. Possibly the most important case is that of the attenuation coefficient integrated with
respect to energy, as in the formulation of a sum rule, and the range of integration includes
the subset of intermediate states which are labelled by the set of quantum numbers summed
over in the idealized scattering length; cf. section 4.

The new theory has been investigated using bothjj -coupling and Russell–Saunders
coupling schemes. Measurable quantities calculated are the attenuation coefficient, and
cross-sections for resonance-enhanced Bragg diffraction and inelastic scattering, including
their dependence on states of partial polarization in the primary beam.

A corresponding discussion of absorption and resonance-enhanced scattering processes
that engage quadrupolar events is the subject of a second paper [21]. A third paper discusses
spin-dependent contributions found when (A.3) is left as a function ofJ̄ .
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Appendix A

In the derivation of the idealized scattering length for a multi-electron occupation of a
valence shell with angular momentuml we start from an exact formula for the product of
matrix elements in the scattering length, equation (2.1) together with (2.2), which is correct
for one particle in the valence shell. We work with the dipole approximation to the current
operator. However, the method that we describe can be applied to higher-order multipole
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operators; the final formulae are even more cumbersome than for dipole-allowed transitions,
as might be anticipated.

The dipole operator for one particleRq = RC1
q (R̂) where q = −1, 0, +1 labels

spherical components of the position variable, andC1
q (R̂) is a spherical harmonic of rank

one, normalized in the manner proposed by Racah. A matrix element ofRq satisfies the
Wigner–Eckart theorem (3.1). The reduced matrix element ofRq involves the coupling of
three angular momenta and the appearance of a 6j -symbol is thus anticipated. The result is

(lJ ||R||l̄J̄ ) = (−1)3/2−J+l〈l|R|l̄〉(l||C(1)||l̄) [
(2J + 1)(2J̄ + 1)

]1/2
{

J

l̄

1
1
2

J̄

l

}
. (A.1)

Here,

(l||C(1)||l̄) = (−1)l
[
(2l + 1)(2l̄ + 1)

]1/2
(

l

0
1
0

l̄

0

)
(A.2)

and the 3j -symbol vanishes ifl +1+ l̄ is an odd integer. The latter result and the triangular
condition lead to the dipole selection rule; all terms which do not satisfyl̄ = l ± 1 are
zero. In (A.1) there is also the radial matrix element of order one for the valence and core
wave functions; we assume that it does not depend on the total angular momenta. As an
illustration of the value of this matrix element we refer to the values for 4d–4f absorption
in the lanthanides given in reference [6], where it is found that the average for the charge
states 63 through to 67 is−0.63 in units of the Bohr radius.

The product of matrix elements which appears, together with other quantities, in the
formula for our idealized scattering length is∑

J̄ M̄

〈lJM|Rq |l̄J̄ M̄〉〈l̄J̄ M̄|Rq ′ |lJ ′M ′〉. (A.3)

Each matrix element is obtained from the Wigner–Eckart theorem (3.1) and (A.1). Hence,
the nub of the calculation that we face is to perform the sum overJ̄ and M̄ of a product
of four nj -symbols; two 3j -symbols, which come from the Wigner–Eckart theorem and
contain bothJ̄ and M̄ in their arguments, and two 6j -symbols which depend on̄J . A
method of performing the sum over̄J and M̄ is to use an identity for the product of two
6j -symbols that expresses them each as a sum of the product of three 6j -symbols, a step
forward becausēJ occurs in just one of the three 6j -symbols. The calculation, then, requires
the sum overJ̄ andM̄ of the product of two 3j -symbols and one 6j -symbol; the answer
is a product of two 3j -symbols, one of which has as arguments the quantities demanded by
the Wigner–Eckart theorem. The two identities that we have referred to in the outline of
the calculation defined in (A.3) can be found in the book by Rotenberget al [15], equations
(2.8) and (2.19).

The physical process that we need to describe is the transfer of one hole from the valence
shell to a core state full of electrons. Of course, the occupation of the valence shell, in its
ground-state configuration, strongly influences the process. An extreme is a valence shell
full of electrons, and no holes,nh = 0. In this case, the process of interest is forbidden.
Our result, just described, for the quantity defined in (A.3), correctly describes the process
for a valence shell whose ground-state configuration contains one hole,nh = 1. It is now
generalized to a configurationnh > 1 by a straightforward application of the method, due
to Racah, which uses fractional parentage coefficients to describe a state ofnh equivalent
particles. It is necessary to give some thought to the use of the method to a configuration
of holes, in contrast to the more familiar example of electrons; not surprisingly, answers to
the relevant points of concern are given by Racah; see section 6 of reference [16].
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All of the formulae that we need for fractional-parentage coefficients, forjj - and
Russell–Saunders coupling, are contained in the book by de-Shalit and Talmi [4]. (NB
the identity in Rotenberget al numbered (2.19) is reproduced by de-Shalit and Talmi,
equation (15.14), but the printed formula contains a misprint.) The result for (A.3) that
applies fornh > 1 equivalent holes we denote byϒ and its value is

ϒqq ′(θJM; θ ′J ′M ′) =
∑
K,m0

〈θJM|T K
m0

|θ ′J ′M ′〉(−1)m0

× (2K + 1)(l||C(1)||l̄)(l̄||C(1)||l)〈l |R| l̄〉2

{
1
l

K

l̄

1
l

} (
1
q

K

−m0

1
q ′

)
. (A.4)

The matrix element of the tensorT K
m0

satisfies (3.1), andm0 = M − M ′ = q + q ′. The
triangular condition onK limits its values to 0, 1 and 2. The labelθ , about which we
have more to say later in the appendix, is a composite label that denotes all the quantum
numbers required to uniquely define a state over and above the labels (quantum numbers)
J and M. All quantities in (A.4) are dimensionless apart from the radial integral, andϒ

has the dimension of (length)2. No approximation is made in reaching the result (A.4) for
the quantity defined by (A.3), as we hope is clear from the derivation which is described.

The value of the reduced matrix element ofT which arises in (A.4) on application
of the Wigner–Eckart theorem (3.1) depends on the coupling scheme. We start with the
jj -coupling scheme. For this scheme,θ is the seniority quantum number [4]; it is often
denoted byν and we henceforth comply with this convention. For one particleT = t and
a building block in the reduced matrix element ofT for nh > 2 particles is the reduced
matrix element oft . Let j = l ± 1

2; one finds

(j ||t (K)||j ′) = (−1)j+K+1/2+l [(2j + 1)(2j ′ + 1)]1/2

{
j

l

K
1
2

j ′

l

}
. (A.5)

The phase factor in (A.5) is for the scheme in which spin is coupled to orbital angular
momentum, i.e. the Clebsch–Gordan coefficient in the coupling is( 1

2mslm|jmj ). (If the
spin and orbital angular momentum labels are reversed in the Clebsch–Gordan coefficient
a different phase factor is obtained in the corresponding reduced matrix element oft . Two
well-known texts on atomic theory use different coupling schemes. Judd [17] and the
present work concur and use theSL-scheme, adopted by Racah, and Cowan [18] uses the
LS-scheme. In their book on nuclear shell theory, de-Shalit and Talmi [4] use theSL-
scheme.) For the configuration ofnh equivalent particles,jnh , T is the sum ofnh ts and
the reduced matrix element is

(νJ ||T (K)||ν ′J ′) = (j ||t (K)||j)(2K + 1)−1/2(νJ ||V (K)||ν ′J ′). (A.6)

It is noted in (A.6) that on the right-hand side the reduced matrix element oft is evaluated for
j = j ′. The reduced matrix element ofV is compiled from fractional-parentage coefficients
and 6j -symbols; our definition of the reduced matrix element and various properties of
magnetic atoms described by ajj -coupling scheme are found in [10]. Table 1(a) lists
values of interest in the study of magnetic materials. The following properties of the
reduced matrix elements ofV are to be noted.

For K = 0, the reduced matrix element ofV vanishes unlessJ = J ′ andν = ν ′:

(νJ ||V (0)||ν ′J ′) = nh

(
2J + 1

2j + 1

)1/2

δJ,J ′δν,ν ′ . (A.7)

Reduced matrix elements withK odd have the remarkable property of being independent
of the numbers of particles, and diagonal with respect to the seniority number. For our
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purposes we need only one case, namely,

(νJ ||V (1)||ν ′J ′) =
√

3
(J ||J ||J )

(j ||j ||j)
δJ,J ′δν,ν ′ (A.8)

where (j ||j ||j)2 = j (j + 1)(2j + 1). For nh = 2 the reduced matrix element vanishes
unlessJ andJ ′ are even integers, in which case, for allK,

(νJ ||V (K)||ν ′J ′) = 2δν,ν ′
[
(2J + 1)(2K + 1)(2J ′ + 1)

]1/2
(−1)2j+K

{
J

j

K

j

J ′

j

}
. (A.9)

For K = even integer, K > 2, andν = ν ′:

(jnνJ ||V (K)||jnνJ ′) =
(

2j + 1 − 2n

2j + 1 − 2ν

)
(j ννJ ||V (K)||jννJ ′).

For K = even integer, K > 2, andν ′ = ν − 2:

(jnνJ ||V (K)||jnν − 2, J ′)

=
(

(n − ν + 2)(2j + 3 − n − ν)

2(2j + 3 − 2ν)

)1/2

(j ννJ ||V (K)||jνν − 2, J ′).

It is interesting to observe that the coefficients in these two results forK an even integer
are obtained from correspondingθ -basis relations, to be given, by usingj → 2l + 1/2,
i.e. 2j + 1 ↔ 2(2l + 1).

The statejn and its conjugate statej2j+1−n have the same quantum numbers, including
the seniority. From the foregoing it is evident that, for the conjugate state:

(i) an odd tensor has the same sign and magnitude as the statejnh , and
(ii) an even tensor(K > 2) for

(a) ν = ν ′: has the same magnitude and opposite sign, and for
(b) ν ′ = ν − 2: has the same magnitude and sign.

It is interesting to observe that the scattering of neutrons by a magnetic atom is described
entirely by reduced matrix elements ofV (K) with K = 1, 3, . . . [10].

The matrix elements for configurations of non-equivalent holes are provided by de-Shalit
and Talmi [4]. We give one example in section 6.

Let us survey the behaviour of the reduced matrix element ofV (K) as a function
of the number of particles (holes)nh. For nh = 0 the reduced matrix element for all
values ofK has the value zero. This statement is obviously correct forK = 0 because
the matrix element (A.7) is proportional tonh. For other values ofK the reduced matrix
element is zero when the quantum numbers are given values appropriate fornh = 0, namely,
L = L′ = S = S ′ = J = J ′ = 0. By the same argument, all of the reduced matrix elements
for K > 0 are zero for the maximum number of holes,nh = 2j + 1. The physical content
of this result is that fornh = 2j + 1 the valence shell is spherically symmetric and, hence,
unable to carry information about the environment. By definition, fornh = 1,

(νj ||V (K)||νj) = (2K + 1)1/2 all K.

The corresponding result for the conjugate state,nh = 2j , applies forK > 0—the result
for K = 0 is (A.7)—and it is

(νj ||V (K)||νj) = (−1)1+K(2K + 1)1/2.
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The other coupling scheme of interest in the study of magnetic materials is theSL-
coupling, or Russell–Saunders scheme. In this scheme,θ is an abbreviation for the three
quantum numbersν, S, andL. For the reduced matrix element ofT one finds

(θJ ||T (K)||θ ′J ′) = δs,s ′(−1)L
′+J+S+K

[
(2J + 1)(2J ′ + 1)

(2K + 1)

]1/2 {
J ′

L

L′

J

S

K

}
(θ ||V (K)||θ ′).

(A.10)

Like its counterpart injj -coupling, the reduced matrix element(θ ||V (K)||θ ′) is constructed
from fractional-parentage coefficients and 6j -symbols; our definition is identical with the
one adopted by Judd [17], equation (7.52); however, the author does not considerjj -
coupling. In reference [4] both coupling schemes are considered. An extensive tabulation
of reduced matrix elements is found in reference [19], part of which is here reproduced in
table 1(b).

Special cases of interest are

(θ ||V (0)||θ ′) = nhδθ,θ ′

(
2L + 1

2l + 1

)1/2

(A.11)

and

(θ ||V (1)||θ ′) =
√

3δθ,θ ′
(L||L||L)

(l||l||l) . (A.12)

For K = even integer andν = ν ′,

(lnνSL||V (K)||lnνS ′L′) =
(

2l + 1 − n

2l + 1 − ν

)
(lννSL||V (K)||lννS ′L′)

and

(lnνSL||V (K)||lnν − 2, S ′L′) = 1

2

(
(n − ν + 2)(4l + 4 − n − ν)

(2l + 2 − ν)

)1/2

× (lννSL||V (K)||lνν − 2, S ′L′).

The seniority selection rule isν − ν ′ = 0, ±2.
Matrix elements for a given state and its conjugate are the same for odd-rank tensors,

and of equal magnitude and opposite sign for even tensors.
The properties of the reduced matrix elements ofV (K) for nh = 0 and 1 and the

conjugate states that we noted earlier in thejj -coupling scheme have their counterparts in
the Russell–Saunders coupling scheme. Fornh = 0 andnh = 2(2l + 1), the reduced matrix
elements withK > 0 are zero. Fornh = 1,

(l||V (K)||l) = (2K + 1)1/2 all K

and fornh = 4l + 1, andK > 0,

(l||V (K)||l) = (−1)1+K(2K + 1)1/2.

Values forK = 0 and allnh are obtained from (A.12).
In the problem of describing the scattering of neutrons by a magnetic atom, with states

represented in theSL-scheme, the interaction mediated by the current (often called the
orbital interaction) is expressed in terms of the reduced matrix elements ofV with an odd
order. The second part of the interaction, arising from the dipolar interaction between the
(spin) moment of the electron and the magnetic moment of the neutron, cannot be expressed
in terms ofV ; see reference [20]. In this respect, the description of neutron scattering by
a magnetic atom depends on the type of coupling scheme used to classify its states,ln.
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